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Abstract. Stormer’s theory of charged particles in a magnetic dipole field is generalised in 
order to investigate charged particle trapping in the electromagnetic field of the parallel 
rotator. This problem amounts to the discussion of ‘allowed’ and ‘forbidden’ regions for 
an electrically charged particle within an axially symmetric electromagnetic field configur- 
ation described by the superposition of a magnetic dipole and an electric quadrupole field. 
The trapping regions are calculated using the conservation laws of energy and generalised 
angular momentum. 

1. Introduction 

The trapping of charged particles in the field of a homogeneously magnetised sphere 
which is at rest in the inertial frame of reference was first studied by Stormer [ l ] .  His 
discovery of ‘allowed’ and  ‘forbidden’ regions for charged particles and of regions 
appropriate for particle storage has become very important for interpreting the 
behaviour of charged particles in the neighbourhood of magnetised stellar bodies. The 
appearance of trapping regions in particular has become the basis for the understanding 
of particle inclusion inside the radiation belts of the Earth and of other planets [2]. 

The latter problem has been modified by Stern [3] in order to include higher 
moments of the magnetic field, still under the assumption of an  axial symmetry. 
Shalimov and Shvachunov [4] have considered a different modification by superposi- 
tion of a homogeneous, constant external magnetic field, again under the assumption 
of axial symmetry. In this context, one can also recall the work of Artemyev [5] who, 
in addition to the magnetic force originating in the magnetic dipole field, considered 
the influence of a gravitational field of a mass point for application to the dynamics 
of electrically charged dust particles. 

We generalise Stormer’s results for the electromagnetic field of a homogeneously 
magnetised sphere rotating with a given angular velocity w which is parallel to its 
magnetic dipole moment p, and obtain a variety of new features. One must, however, 
be careful when trying to apply these features to the situation in the neighbourhood 
of a magnetised star since they have been found under the premise of vacuum 
electrodynamics whereas the plasma present in this region will, in general, have a great 
influence on the electromagnetic field and on the motion of charged particles. Neverthe- 
less, the present analysis is believed to be useful for understanding certain aspects of 
electromagnetic processes evolving in the vicinity of a parallel rotator. 
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2. Condition for ‘allowed’ and ‘forbidden’ regions 

We consider an  electromagnetic field with azimuthal symmetry represented by the 
electric potential 

A0 = Ao(R, z )  
superimposed on the magnetic potential 

( A R ,  A,,  A ; )  = (0 ,  F R ( R ’ + Z ~ ) - ~ ’ ’ ,  0 )  

of a magnetic dipole p. We use cylindrical coordinates R, I$ and z. 

L =  -mc2(1 - ~ ~ / c ~ ) ~ / ~ + ( e p / c ) R ’ ~ ( R ’ + z ~ ) - ~ / ~ - e A ,  

Under these premises, the Langrangian 

of a particle of rest mass m and electric charge e does not depend explicitly on the 
time coordinate t and the azimuthal angle I$. Therefore the z component of the 
generalised angular momentum 

L3L p b  =-= myR2$ + ( e p / c ) R 2 ( R 2 +  z ’ ) - ~ / ~  
ad 

(which obviously is nothing but the component of the generalised momentum canoni- 
cally conjugate to the angle 4)  as well as the total energy 

E = m y c 2 + e A ,  ( 2 )  
are conserved quantities. We will use the following definitions: 

= (1 - v 2 / c 2 ) - I / 2  r =  ( R Z + ~ ~ ) I / ~  

ER = mc2. cos 0 = R / r  

Now the velocity from (2) may be used to eliminate the velocity in (1) and thus 
obtain a relation 

[ ( E  - eA,)* - E;]-”’ 
r cos 0 

for the cosine of the angle a between the velocity vector and its projection onto the 
equatorial plane. Since /cos a /  s 1 the dynamical variables attributed to a physical 
particle must obey the inequality 

As an example we wish to consider the electric potential 

A,( r, 0 )  = ( Q / 4 r 3 ) ( 3  sin’ 0 - 1 )  

describing the field of an electric quadrupole moment Q. The latter may be thought 
of as produced by the rotation of a homogeneously magnetised sphere of radius r,,, 
dielectric permeability E d ,  and magnetic dipole moment p rotating at an angular 
velocity w around the direction of the dipole moment: 
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as has been discussed in great detail by Deutsch [ 6 ] .  The ‘allowed’ regions are then 
defined by the inequality 

r 6 ( E i - E 2 ) c o s 2  e+r4c2p:+2r3[aeQE(3sin2 e-1)-cp,ep]cos2 e 

+ r ’ e 2 p 2 ~ ~ ~ 4 ~ + ~ e 2 Q 2 c o s 2  8(3sin2 8- l ) ’sO.  (4) 

3. Choice of parameters 

We restrict ourselves to energies E > E R .  Particles with these energies are not bound 
because of the energy conservation alone, but the conservation of momentum p+  is 
decisive. 

With the help of 

( E2 - E;)’” 

CP, 
P =  r 

which will be used to scale particle coordinates by R,/  R = Z,/ z = p /  r and the para- 
meters defined by 

E = E/ (  E’ - (5b) 

A = e p ( E 2 - E i ) ‘ ’ 2 / c 2 p i  (5c) 

K = eQ(E2-  Ei)/4c3p)m (5d)  

then the inequality (4) for ‘allowed’ regions may be written in the form 

p6 cos’ e - p4-2p3[EK(3 sin’ e - 1) - A ]  cos2 e 
- p2A2 cos4 6 - K2(3 sin’ e - 1)2 cos’ e 3 0. ( 6 )  

Now E > E R  corresponds to E > 1. Also one may restrict discussion to p ,  > 0, i.e. 
p > 0, since the inequality (4) is invariant against the transformation 

while thereby p - - p  and thus 

Each of the latter two parameters then may be attributed values between -CO and +CO. 

It should be mentioned that equations (5) can be inverted such that for every given 
set of parameter values ( p, E, A, K )  within the aforementioned regions of definition 
there can be found a magnetic dipole moment p, an  electric quadrupole moment Q 
and  initial conditions ro, yo ,  u , ~  for a particle with charge e and mass m. 

Equation ( 6 )  shows in addition to the azimuthal symmetry a mirror symmetry with 
respect to the equatorial plane. Therefore we restrict our analyses to the region 
R, ,  Z, > 0. 
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4. Results 

It can be shown with the help of Descartes’ theorem (as described, for example, in 
[7]) that the polynomial of the sixth order in p defining the borderline of the ‘forbidden’ 
regions always has at least one positive. root. Let pa be the largest positive root of this 
polynomial. It is then obvious that the left side of the inequality (6) becomes positive 
for p > pa. Therefore every p > pa is ‘allowed’. 

Alternatively, let pr be the smallest positive root of the aforementioned polynomial. 
If we then restrict ourselves to values of 6 such that 0 f 7 ~ / 2  and sin2 0 # f ,  the left 
side of the inequality (6) obviously becomes negative for p < pF. Thus every p < pF is 
‘forbidden’. 

Now we wish to recall the shape of the trapping regions predicted by Stormer [ l ]  
for the pure magnetic dipole field, making use of the parameters introduced here. The 
boundary lines between ‘allowed’ and ‘forbidden’ regions are determined through the 
following real and positive roots of equation (6) with K = 0: 

1 
A cos 0 

The corresponding configuration exhibits mirror and azimuthal symmetry, and particle 
trapping turns out to be possible for 0 < A S 4 .  

As an illustration of this case, figure 1 shows a meridian cross section of the 
toroidal-shaped trapping region and the outer boundary of the ‘forbidden’ region for 
A = 0.23. 

0 . 4 .  
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2, 
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Figure 1. ‘Allowed’ and ‘forbidden’ regions for charged particles in a magnetic dipole field 
h = 0.23. 

Turning to the more general case, figure 2 shows a sequence of diagrams, for 
constant E = 2 and K = 0.01, as A increases from 0.1 to 0.215. One may imagine that 
this variation of A is produced by a corresponding growth of the magnetic dipole 
moment p while all other parameters are kept constant. In ( a ) ,  the first of the four 
meridian cross sections, there is an exterior ‘allowed’ region on the right side of the 
diagram and two small tori are mirror symmetric with respect to the equatorial plane, 
one of which can be seen in the lower left corner. In ( b )  these two tori have developed 
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Figure 2. ‘Allowed’ and ‘forbidden’ regions for charged particles in the combined field of 
a magnetic dipole and an electric quadrupole, for E = 2, K = 0.01 and increasing A = ( a )  
0.1, ( b )  0.11, ( e )  0.2, ( d )  0.215. 

into three tori, the larger of which cuts through the equatorial plane. In (c )  after 
further increase of the parameter A these three tori have coalesced into one torus. 
Finally, in ( d )  this torus has merged with the exterior ‘allowed’ region and in this case 
there is no particle storage. 

The transition from ( b )  to ( c )  of figure 2 corresponds to the development illustrated 
in figure 3. Parameter values in this sequence are E = 3 and K = 0.01 with A increasing 
from 0.0913 to 0.0915. This illustrates in great detail the coalescence of the three tori 
into one torus in a process which may be understood as an increase of the magnetic 
dipole moment while all the other parameters are kept constant. 

Another type of development of the ‘allowed’ and ‘forbidden’ regions in the field 
configuration considered here is shown in figure 4 which has been computed using 
parameter values E = 10.0 and K = -0.1 with A increasing from -0.5 to 0.05. In  this 
sequence two tori are born ( b )  inside the ‘forbidden’ region which later merge (c, d )  
with the ‘allowed’ exterior region on the right side of the four diagrams. ;;;Ki IA?l Kl 
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Figure 3. Development of three trapping tori into one torus, for E = 3, K =0.01 and 
increasing A = ( a )  0.0913, ( b )  0.0914, ( c )  0.0915. 
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Figure 4. Merging of two trapping tori with the external ‘allowed’ region, for E = 10, 
K = -0.1 and increasing A = ( a )  -0.5, ( b )  -0.05, ( c )  -0.03, ( d )  0.05. 

The aforementioned examples clearly show that within the electromagnetic field 
configuration considered here one, two or even three disconnected torus-shaped trap- 
ping regions may exist, associated with certain ranges of parameter values. 
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